CGG-repeat dynamics and FMR1 gene silencing in fragile X syndrome stem cells and stem cell-derived neurons
نویسندگان
چکیده
BACKGROUND Fragile X syndrome (FXS), a common cause of intellectual disability and autism, results from the expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene to >200 repeats. Such expanded alleles, known as full mutation (FM) alleles, are epigenetically silenced in differentiated cells thus resulting in the loss of FMRP, a protein important for learning and memory. The timing of repeat expansion and FMR1 gene silencing is controversial. METHODS We monitored the repeat size and methylation status of FMR1 alleles with expanded CGG repeats in patient-derived induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) that were grown for extended period of time either as stem cells or differentiated into neurons. We used a PCR assay optimized for the amplification of large CGG repeats for sizing, and a quantitative methylation-specific PCR for the analysis of FMR1 promoter methylation. The FMR1 mRNA levels were analyzed by qRT-PCR. FMRP levels were determined by western blotting and immunofluorescence. Chromatin immunoprecipitation was used to study the association of repressive histone marks with the FMR1 gene in FXS ESCs. RESULTS We show here that while FMR1 gene silencing can be seen in FXS embryonic stem cells (ESCs), some silenced alleles contract and when the repeat number drops below ~400, DNA methylation erodes, even when the repeat number remains >200. The resultant active alleles do not show the large step-wise expansions seen in stem cells from other repeat expansion diseases. Furthermore, there may be selection against large active alleles and these alleles do not expand further or become silenced on neuronal differentiation. CONCLUSIONS Our data support the hypotheses that (i) large expansions occur prezygotically or in the very early embryo, (ii) large unmethylated alleles may be deleterious in stem cells, (iii) methylation can occur on alleles with >400 repeats very early in embryogenesis, and (iv) expansion and contraction may occur by different mechanisms. Our data also suggest that the threshold for stable methylation of FM alleles may be higher than previously thought. A higher threshold might explain why some carriers of FM alleles escape methylation. It may also provide a simple explanation for why silencing has not been observed in mouse models with >200 repeats.
منابع مشابه
CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations
In fragile X syndrome (FXS), CGG repeat expansion greater than 200 triplets is believed to trigger FMR1 gene silencing and disease etiology. However, FXS siblings have been identified with more than 200 CGGs, termed unmethylated full mutation (UFM) carriers, without gene silencing and disease symptoms. Here, we show that hypomethylation of the FMR1 promoter is maintained in induced pluripotent ...
متن کاملEuropean Human Genetics Conference, May 21–24, 2016, Barcelona, Spain
Fragile X Syndrome (FXS) is caused by an expansion of CGG trinucleotide repeats in the 5′ untranslated region of the Fragile X mental retardation 1 (FMR1) geneon theXchromosome.Affected individuals possess over 200 copies of the CGG repeat, resulting in hypermethylation of the FMR1 promoter, which leads to epigenetic silencing of the gene and FMRP protein deficiency. Children with FXS display i...
متن کاملEpigenetic Characterization of the FMR1 Gene and Aberrant Neurodevelopment in Human Induced Pluripotent Stem Cell Models of Fragile X Syndrome
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic...
متن کاملReactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome
Fragile X syndrome (FXS) is a common cause of intellectual disability that is most often due to a CGG-repeat expansion mutation in the FMR1 gene that triggers epigenetic gene silencing. Epigenetic modifying drugs can only transiently and modestly induce FMR1 reactivation in the presence of the elongated CGG repeat. As a proof-of-principle, we excised the expanded CGG-repeat in both somatic cell...
متن کاملFMR1 Epigenetic Silencing Commonly Occurs in Undifferentiated Fragile X-Affected Embryonic Stem Cells
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016